Suppose that the eigenvalues of matrix $A$ are 1, 2, 4. Find the determinant of $(A^{-1})^T$.
Answer: 0.125
Explanation:
The eigenvalues of matrix $A$ are 1, 2, 4.
Therefore, determinant of $A$, $|A|$ = product of the eigenvalues of $A$ = 8.
Now, $|A^{-1}| = \frac{1}{|A|} = \frac{1}{8}$.
Hence, $|(A^{-1})^T| = |A^{-1}| = \frac{1}{8} = 0.125$.
Comments
Post a Comment