If the matrix $A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & i & i \\ 0 & 0 & 0 & -i \end{bmatrix}$, then find the value of $A^4$ using Cayley-Hamilton theorem.
If the matrix $A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & i & i \\ 0 & 0 & 0 & -i \end{bmatrix}$, then find the value of $A^4$ using Cayley-Hamilton theorem.
(GATE 1993)
Answer: $A^4 = I$.
Explanation:
Since the given matrix $A$ is an upper triangular matrix, the eigenvalues of $A$ are the main diagonal values.
Therefore, the eigenvalues of $A$ are $1$, $-1$, $i$, $-i$.
Hence, the characteristic equation of of $A$ is
$(\lambda - 1)(\lambda + 1)(\lambda - i)(\lambda + i) = 0$
$\Rightarrow (\lambda^2 - 1)(\lambda^2 + 1) = 0$
$\Rightarrow (\lambda^4 - 1) = 0$
Therefore, by Calley-Hamilton theorem, we have $A^4 - I = 0$, i.e., $A^4 = I$.
Comments
Post a Comment