$E_1$ and $E_2$ are events in a probability space satisfying the following constraints: $P(E_1) = P(E_2)$, $P(E_1 \cup E_2) = 1$. If $E_1$ and $E_2$ are independent then find the value of $P(E_1)$.
$E_1$ and $E_2$ are events in a probability space satisfying the following constraints: $P(E_1) = P(E_2)$, $P(E_1 \cup E_2) = 1$.
If $E_1$ and $E_2$ are independent then $P(E_1) = $
(A) 0, (B) $\dfrac{1}{4}$, (C) $\dfrac{1}{2}$, (D) 1
(GATE 2000)
Answer: (D) 1
Explanation:
Given, $P(E_1) = P(E_2)$, $P(E_1 \cup E_2) = 1$, and $E_1$ and $E_2$ are independent events.
Hence, $P(E_1 \cap E_2) = P(E_1) \times P(E_2)$.
Now, $P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1) \times P(E_2)$
$\Rightarrow 1 = P(E_2) + P(E_2) - P(E_2) \times P(E_2)$
$\Rightarrow \{P(E_2)\}^2 - 2 \times P(E_2) + 1 = 0$
$\Rightarrow (P(E_2) - 1)^2 = 0$
$\Rightarrow P(E_2) = 1$.
Comments
Post a Comment