Let $P(E)$ denote probability of an event $E$. Given $P(A) = 1$, $P(B) = \dfrac{1}{2}$, find the values of $P(A|B)$ and $P(B|A)$.
Let $P(E)$ denote probability of an event $E$. Given $P(A) = 1$, $P(B) = \dfrac{1}{2}$. The values of $P(A|B)$ and $P(B|A)$ respectively are
(A) $\dfrac{1}{4}$, $\dfrac{1}{2}$
(B) $\dfrac{1}{2}$, $\dfrac{1}{4}$
(C) $\dfrac{1}{2}$, 1
(D) 1, $\dfrac{1}{2}$
(GATE 2003)
Answer: (D) 1, $\dfrac{1}{2}$
Explanation:
Since, $P(A) = 1$ and $P(B) = \dfrac{1}{2}$, hence, $P(A \cap B) = P(B) = \dfrac{1}{2}$.
Now, $P(A|B) = \dfrac{P(A \cap B)}{P(B)} = \dfrac{\dfrac{1}{2}}{\dfrac{1}{2}} = 1$,
and $P(B|A) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{1}{2}}{1} = \dfrac{1}{2}$.
Comments
Post a Comment