If X is a continuous random variable whose probability density function is given by \[f(x) = \left\{ \begin{array}{ll} k(5x - 2x^2) & \mbox{if } 0 \leq x \leq 2 \\ 0 & \mbox{otherwise,} \end{array} \right.\] then find $P(X > 1)$.
If X is a continuous random variable whose probability density function is given by \[f(x) = \left\{ \begin{array}{ll} k(5x - 2x^2) & \mbox{if } 0 \leq x \leq 2 \\ 0 & \mbox{otherwise,} \end{array} \right.\] then $P(X > 1)$ is
(A) $\dfrac{3}{14}$
(B) $\dfrac{4}{5}$
(C) $\dfrac{14}{7}$
(D) $\dfrac{17}{28}$
Answer: (D) $\dfrac{17}{28}$
Explanation:
$\int\limits_{-\infty}^{+\infty}f(x)dx = 1$
$\Rightarrow \int\limits_{0}^{2}k(5x-2x^2)dx = 1$
$\Rightarrow k = \dfrac{3}{14}$
Now, $P(X > 1)$
$= \int\limits_{1}^{\infty}f(x)dx$
$= \int\limits_{1}^{2} \dfrac{3}{14}(5x - 2x^2)dx$
$= \dfrac{17}{28}$
Comments
Post a Comment