The life of a bulb (in hours) is random variable with an exponential distribution $f (t) =\alpha e^{- \alpha t}, 0 \leq t \leq \infty.$ Find the probability that its value lies between 100 and 200 hours.
The life of a bulb (in hours) is random variable with an exponential distribution $f (t) =\alpha e^{- \alpha t}, 0 \leq t \leq \infty.$ The probability that its value lies between 100 and 200 hours is
(A) $e^{-100\alpha} - e^{-200\alpha}$
(B) $e^{-100} - e^{-200}$
(C) $e^{-100\alpha} + e^{-200\alpha}$
(D) $e^{-200\alpha} - e^{-100\alpha}$
(GATE 2005)
Answer: (A) $e^{-100\alpha} - e^{-200\alpha}$
Explanation:
The required probability is
$P(100 \leq X \leq 200)$
$= \int\limits_{100}^{200}f(t)dt$
$= \int\limits_{100}^{200}\alpha e^{-\alpha t}dt$
$= e^{-100\alpha} - e^{-200\alpha}$
Comments
Post a Comment