Assume that the duration in minutes of a telephone conversation follows the exponential distribution $f(x) = \frac{1}{5}e^{-\frac{x}{5}}, x \geq 0$. Find the probability that the conversation will exceed five minutes.
Assume that the duration in minutes of a telephone conversation follows the exponential distribution $f(x) = \frac{1}{5}e^{-\frac{x}{5}}, x \geq 0$. The probability that the conversation will exceed five minutes is
(A) $\dfrac{1}{e}$
(B) $1 - \dfrac{1}{e}$
(C) $\dfrac{1}{e^2}$
(D) $1 - \dfrac{1}{e^2}$
(GATE 2007)
Answer: (A) $\dfrac{1}{e}$
Explanation:
The required probability is
$P(5 < X <\infty)$
$= \int\limits_{5}^{\infty}f(x)dx$
$= \int\limits_{5}^{\infty}\frac{1}{5}e^{-\frac{x}{5}}dx$
$= \dfrac{1}{e}$
Comments
Post a Comment