The random variable $X$ taken on the values 1, 2 or 3 with probabilities $\dfrac{2 + 5p}{5}$, $\dfrac{1 + 3p}{5}$, $\dfrac{1.5 + 2p}{5}$ respectively. Find the values of $p$ and $E(X)$.
The random variable $X$ taken on the values 1, 2 or 3 with probabilities $\dfrac{2 + 5p}{5}$, $\dfrac{1 + 3p}{5}$, $\dfrac{1.5 + 2p}{5}$ respectively. The values of $p$ and $E(X)$ are respectively
(A) 0.05, 1.87
(B) 1.90, 5.87
(C) 0.05, 1.10
(D) 0.25, 1.40
(GATE 2007)
Answer: (A) 0.05, 1.87
Explaination:
$\dfrac{2 + 5p}{5} + \dfrac{1 + 3p}{5} + \dfrac{1.5 + 2p}{5} = 1$
$\Rightarrow 4.5 + 10p = 5$
$\Rightarrow p = 0.05$
Now, $E(X)$
$= \sum x \times P(X = x)$
$= 1 \times \left(\dfrac{2 + 5p}{5}\right) + 2 \times \left(\dfrac{1 + 3p}{5}\right) + 3 \times \left(\dfrac{1.5 + 2p}{5}\right)$
$= \dfrac{8.5 + 17p}{5}$
$= \dfrac{8.5 + 0.85}{5}$
$= \dfrac{9.35}{5}$
$= 1.87$
Comments
Post a Comment