Given $f_1$, $f_3$ and $f$ in canonical sum of products form (in decimal) for the given circuit find $f_2$.
Given $f_1$, $f_3$ and $f$ in canonical sum of products form (in decimal) for the circuit
$f_1 = \sum m(4, 5, 6, 7, 8)$,
$f_3 = \sum m(1, 6, 15)$,
$f = \sum m(1, 6, 8, 15)$,
then $f_2$ is
(A) $\sum m(4, 6)$
(B) $\sum m(4, 8)$
(C) $\sum m(6, 8)$
(D) $\sum m(4, 6, 8)$
(GATE 2008)
Answer: (C) $\sum m(6, 8)$
Explanantion:
$f = (f_1 \cap f_2) \cup f_3$
Check option (C):
$(f_1 \cap f_2) \cup f_3$
$= \big(\sum m(4, 5, 6, 7, 8) \cap \sum m(6, 8)\big) \cup \sum m(1, 6, 15)$
$= \sum m(6, 8) \cup \sum m(1, 6, 15)$
$= \sum m(1, 6, 8, 15)$
$= f$

Comments
Post a Comment