The minterm expansion of $f(P, Q, R) = PQ + QR' + PR'$ is
(A) $m_2 + m_4 + m_6 + m_7$
(B) $m_0 + m_1 + m_3 + m_5$
(C) $m_0 + m_1 + m_6 + m_7$
(D) $m_2 + m_3 + m_4 +m_5$
(GATE 2010)
Answer: (A) $m_2 + m_4 + m_6 + m_7$
Explanation:
$f(P, Q, R)$
$= PQ + QR' + PR'$
$= PQ(R + R') + (P + P')QR' + P(Q + Q')R'$, since $A + A' = 1$
$= PQR + PQR' + PQR' + P'QR' + PQR' + PQ'R'$
$= PQR + PQR' + P'QR' + PQ'R'$, since $A + A = A$
$= m_7 + m_6 + m_2 + m_4$
Comments
Post a Comment