If $P$, $Q$, $R$ are Boolean variables, then $(P + Q')( PQ' + PR)( P'R' + Q')$ simplifies to
(A) $PQ'$
(B) $PR'$
(C) $PQ'$
(D) $PR' + Q$
(GATE 2008)
Answer: (A) $PQ'$
Explanation:
$(P + Q')( PQ' + PR)( P'R' + Q')$
$= (PQ' + PR + PQ' + PQR)(P'R' + Q')$, since $AA = A$
$= PQ' + PQ'R + PQ' + PQ'R$, since $AA' = 0$
$= PQ' + PQ'R$
$= PQ'(1 + R)$
$= PQ'$
Comments
Post a Comment