Skip to main content

For the function $f(x) = a + bx$, $0 \leq x \leq 1$, to be valid probability density function, which one of the following statements is correct?

For the function $f(x) = a + bx$, $0 \leq x \leq 1$, to be valid probability density function, which one of the following statements is correct? 

(A) $a = 1$, $b = 4$ 

(B) $a = 0.5$, $b = 1$ 

(C) $a = 0$, $b = 1$ 

(D) $a = 1$, $b = -1$ 

(GATE 2017) 

Answer: (B) $a = 0.5$, $b = 1$ 

Explanation: 

For the function $f(x)$ to be a valid probability density function (PDF), the following must hold: 

$\int\limits_{0}^{1} f(x) = 1$ 

$\Rightarrow \int\limits_{0}^{1} (a + bx) = 1$ 

$\Rightarrow \Big[ax + \dfrac{bx^2}{2}\Big]_{0}^{1} = 1$ 

$\Rightarrow a + \dfrac{b}{2} = 1$ 

Only option (B) $a = 0.5$, $b = 1$ satisfies the above equation. 

Previous Post Next Post

Comments