For the function $f(x) = a + bx$, $0 \leq x \leq 1$, to be valid probability density function, which one of the following statements is correct?
For the function $f(x) = a + bx$, $0 \leq x \leq 1$, to be valid probability density function, which one of the following statements is correct?
(A) $a = 1$, $b = 4$
(B) $a = 0.5$, $b = 1$
(C) $a = 0$, $b = 1$
(D) $a = 1$, $b = -1$
(GATE 2017)
Answer: (B) $a = 0.5$, $b = 1$
Explanation:
For the function $f(x)$ to be a valid probability density function (PDF), the following must hold:
$\int\limits_{0}^{1} f(x) = 1$
$\Rightarrow \int\limits_{0}^{1} (a + bx) = 1$
$\Rightarrow \Big[ax + \dfrac{bx^2}{2}\Big]_{0}^{1} = 1$
$\Rightarrow a + \dfrac{b}{2} = 1$
Only option (B) $a = 0.5$, $b = 1$ satisfies the above equation.
Comments
Post a Comment