Skip to main content

If a random variable $X$ has a Poisson distribution with mean 5, then find the expectation $E[(X + 2)^2]$.

If a random variable $X$ has a Poisson distribution with mean 5, then find the expectation $E[(X + 2)^2]$. 

(GATE 2017) 

Answer: 54 

Explanation: 
Here, $X$ is a random variable that follows a Poisson distribution with mean $E(X) = 5$. 
Therefore, its variance $Var(X) = 5$. 
Now, $Var(X) = E(X^2) - \big\{E(X)\big\}^2$  
$\Rightarrow E(X^2) = 5 + 5^2$ 
$\Rightarrow E(X^2) = 30$ 
Therefore, $E[(X + 2)^2] $ 
$= E(X^2 + 4X + 4)$ 
$= E(X^2) + E(4X) + E(4)$ 
$= E(X^2) + 4E(X) + 4$ 
$= 30 + 4 \times 5 + 4$ 
$= 54$ 

Previous Post Next Post

Comments