If a random variable $X$ has a Poisson distribution with mean 5, then find the expectation $E[(X + 2)^2]$.
If a random variable $X$ has a Poisson distribution with mean 5, then find the expectation $E[(X + 2)^2]$.
(GATE 2017)
Answer: 54
Explanation:
Here, $X$ is a random variable that follows a Poisson distribution with mean $E(X) = 5$.
Therefore, its variance $Var(X) = 5$.
Now, $Var(X) = E(X^2) - \big\{E(X)\big\}^2$
$\Rightarrow E(X^2) = 5 + 5^2$
$\Rightarrow E(X^2) = 30$
Therefore, $E[(X + 2)^2] $
$= E(X^2 + 4X + 4)$
$= E(X^2) + E(4X) + E(4)$
$= E(X^2) + 4E(X) + 4$
$= 30 + 4 \times 5 + 4$
$= 54$
Comments
Post a Comment